Our research utilizes the zebrafish model organism to study how gene expression is regulated in the developing embryo, examining its links to congenital malformations in humans. We specifically focus on heart development and diseases, employing classical genetics alongside bulk and single-cell genomics techniques.

Research Summary

Intricate embryonic patterning is achieved through highly precise regulatory mechanisms that ensure controlled gene expression in the correct time and space. Our research aims to decipher the mechanism by which gene expression is regulated by transcription factors (TFs) and the epigenetic landscape. By exploring these mechanisms, we aim to illuminate how disruptions contribute to human congenital malformations. While key genetic factors that regulate the development and function of the heart are known, understanding their regulation, interactions, and coordination with epigenetic factors at different phases of heart development remains a gap. Our research focuses on cardiomyocytes and cardiac pacemaker cells.

Scientific Impact

We have generated transcriptomics and epigenomics resources of the developing zebrafish heart, covering the cardiomyocytes as well as rare cell types such as pacemakers. Our most recent work established a single cell transcriptome atlas of the developing zebrafish heart, revealing new cell types and their molecular profile. Additionally, our investigations have also revealed putative novel regulatory elements implicated in generating the cardiovascular cell diversity.

Future Goals

We aim to generate zebrafish models of human genetic diseases which could be used for in-depth studies to elucidate disease mechanisms or screening for potential therapies. Ultimately, we hope that our research could contribute to a better understanding of the complex molecular pathways underlying human congenital diseases.

Collaborations

We collaborate with labs within the IIMCB as well as externally. We also collaborate internationally with leading labs in the genomics and clinical genetics field.

Comment

“Eventually, we believe that our research in zebrafish must benefit humans. Therefore, we are always striving to select candidates which possess clinical relevance or potential for therapy.” - Cecilia Lanny Winata, PhD, DSc Habil

Laboratory Webpage

Lab pic

https://zfin.org/ZDB-LAB-141211-1

winiata

Cecilia Lanny Winata, PhD, Dsc Habil

Correspondence address:
Laboratory of Zebrafish Developmental Genomics
International Institute of Molecular and Cell Biology
4 Ks. Trojdena Street, 02-109 Warsaw, Poland
Email: This email address is being protected from spambots. You need JavaScript enabled to view it. 
www: https://zfin.org/ZDB-LAB-141211-1
tel: +48 (22) 597 0768; fax: +48 (22) 597 0715

DEGREES

2021 - Dsc Habil in Biological Sciences, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

2009 - PhD in Biology, Department of Biological Sciences, National University of Singapore

2004 - BSc (Hons.) in Biology, Department of Biological Sciences, National University of Singapore

PROFESSIONAL EXPERIENCE
2014-present - Professor, Head, Zebrafish Developmental Genomics Laboratory, Max Planck/International Institute of Molecular and Cell Biology Research Group in Warsaw, Poland
2013-2014 - Research Associate, Genome Institute of Singapore (with 2013 research visit to laboratory of Prof. Peter Alestrom, Norwegian School of Veterinary Sciences, Oslo, Norway)
2009-2013 - Postdoctoral Fellow with Dr. Sinnakaruppan Mathavan, Genome Institute of Singapore
2004-2009 - Doctoral research with Prof. Gong Zhiyuan and Prof. Vladimir Korzh, Department of Biological Sciences, National University of Singapore

HONORS, PRIZES AND AWARDS

2016 - FIRST TEAM, Foundation for Polish Science
2016 - OPUS (as a partner), National Science Centre
2014 - OPUS, National Science Centre
2000-2004 - ASEAN Undergraduate Scholarship
2003 - Science Faculty Dean’s List, National University of Singapore

team2019

Lab Leader

  • Cecilia Lanny Winata, PhD

Postdoctoral Researchers

  • Shikha Vashist, PhD

  • Constantino Parisi, PhD

Research Technicians

  • Adrianna Pakuła, MSc

PhD Students

  • Aman Suryan, MSc

  • Arunabha Sen, MSc

Lab Technician

  • Julia Kędzierska, MSc

MsC Student

  • Konrad Kulesza, MSc

Laboratory Support Specialist

  • Agnieszka Konkol, MSc

2025

Protocol for the preparation of zebrafish whole heart cell suspension for single-cell analyses.

Abu Nahia K, Winata CL.

STAR Protoc. 2025

Computational analysis of congenital heart disease associated SNPs: unveiling their impact on the gene regulatory system.

Vashisht S, Parisi C, Winata CL.

BMC Genomics. 2025

2024

Computational analysis of congenital heart disease associated SNPs: Unveiling their impact on the gene regulatory system.

Vashisht S, Parisi C, Winata CL.

medRxiv. 2024

scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation.

Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL.

iScience. 2024

2023

xcore: an R package for inference of gene expression regulators.

Migdał M, Arakawa T, Takizawa S, Furuno M, Suzuki H, Arner E, Winata CL, Kaczkowski B.

BMC Bioinformatics.. 2023

Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish.

Uszczynska-Ratajczak B, Sugunan S, Kwiatkowska M, Migdal M, Carbonell-Sala S, Sokol A, Winata CL, Chacinska A.

Life Sci Alliance. 2023

2022

Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish.

Niescierowicz K#, Pryszcz L#, Navarrete C#, Tralle E#, Sulej A#, Abu Nahia K, Kasprzyk ME, Misztal K, Pateria A, Pakuła A, Bochtler M, Winata C.

# Contributed equally

Nat Commun. 2022

Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements.

Baranasic D, Hörtenhuber M, Balwierz PJ, Zehnder T, Mukarram AK, Nepal C, Várnai C, Hadzhiev Y, Jimenez-Gonzalez A, Li N, Wragg J, D'Orazio FM, Relic D, Pachkov M, Díaz N, Hernández-Rodríguez B, Chen Z, Stoiber M, Dong M, Stevens I, Ross SE, Eagle A, Martin R, Obasaju O, Rastegar S, McGarvey AC, Kopp W, Chambers E, Wang D, Kim HR, Acemel RD, Naranjo S, Łapiński M, Chong V, Mathavan S, Peers B, Sauka-Spengler T, Vingron M, Carninci P, Ohler U, Lacadie SA, Burgess SM, Winata C, van Eeden F, Vaquerizas JM, Gómez-Skarmeta JL, Onichtchouk D, Brown BJ, Bogdanovic O, van Nimwegen E, Westerfield M, Wardle FC, Daub CO, Lenhard B, Müller F.

Nat Genet. 2022

Zebrafish/Drosophila Dual System Model for Investigating Human Microcephaly.

Bartoszewski S, Dawidziuk M, Kasica N, Durak R, Jurek M, Podwysocka A, Guilbride DL, Podlasz P, Winata CL, Gawlinski PA.

Cells. 2022

2021

Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift.

Migdał M, Tralle E, Abu Nahia K, Bugajski Ł, Kędzierska KZ, Garbicz F, Piwocka K, Winata CL, Pawlak M.

BMC Genomics.. 2021

Transcriptome profile of the sinoatrial ring reveals conserved and novel genetic programs of the zebrafish pacemaker.

Minhas R, Loeffler-Wirth H, Siddiqui YH, Obrębski T, Vashisht S, Abu Nahia K, Paterek A, Brzozowska A, Bugajski L, Piwocka K, Korzh V, Binder H, Winata CL.

BMC Genomics.. 2021

Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region.

Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C.

Cell Mol Life Sci.. 2021

Cardiac-specific β-catenin deletion dysregulates energetic metabolism and mitochondrial function in perinatal cardiomyocytes.

Balatskyi VV, Vaskivskyi VO, Myronova A, Avramets D, Nahia KA, Macewicz LL, Ruban TP, Kucherenko DY, Soldatkin OO, Lushnikova IV, Skibo GG, Winata CL, Dobrzyn P, Piven OO.

Mitochondrion.. 2021

The development of zebrafish pancreas affected by deficiency of Hedgehog signaling.

Korzh S, Winata CL, Gong Z, Korzh V.

Gene Expr Patterns.. 2021

Fish-Ing for Enhancers in the Heart.

Parisi C, Vashisht S, Winata CL.

J Mol Sci.. 2021

Exploring Translational Control of Maternal mRNAs in Zebrafish.

Winata  CL, Łapiński  M, Ismail  H, Mathavan  S, Sampath P.

Methods Mol Biol.. 2021

2020

Targeted RNA Knockdown by a Type III CRISPR-Cas Complex in Zebrafish.

Fricke T, Smalakyte D, Lapinski M, Pateria A, Weige C, Pastor M, Kolano A, Winata C, Siksnys V, Tamulaitis G, Bochtler M.

CRISPR J.. 2020

The zebrafish as a model for developmental and biomedical research in Poland and beyond.

Winata CL, Dodzian J, Bialek-Wyrzykowska U.

Dev Biol.. 2020

MetaPhOrs 2.0: Integrative, Phylogeny-Based Inference of Orthology and Paralogy Across the Tree of Life.

Chorostecki U, Molina M, Pryszcz LP, Gabaldón T.

Nucleic Acids Res.. 2020

MasterOfPores: A Workflow for the Analysis of Oxford Nanopore Direct RNA Sequencing Datasets

Cozzuto L, Liu H, Pryszcz LP, Pulido TH, Delgado-Tejedor A, Ponomarenko J, Novoa EM.

Front Genet.. 2020

2019

A novel conserved enhancer at zebrafish zic3 and zic6 loci drives neural expression.

Minhas R, Paterek A, Łapiński M, Bazała M, Korzh V, Winata CL

Dev Dyn. . 2019

Interplay of Chimeric Mating-Type Loci Impairs Fertility Rescue and Accounts for Intra-Strain Variability in Zygosaccharomyces rouxii Interspecies Hybrid ATCC42981.

Bizzarri M, Cassanelli S, Bartolini L, Pryszcz LP, Dušková M, Sychrová H, Solieri L.

Front Genet.. 2019

Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination.

Pawełkowicz M, Pryszcz L, Skarzyńska A, Wóycicki RK, Posyniak K, Rymuszka J, Przybecki Z, Pląder W.

Plant Reprod. . 2019

Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development.

Pawlak M, Kedzierska KZ, Migdal M, Nahia KA, Ramilowski JA, Bugajski L, Hashimoto K, Marconi A, Piwocka K, Carninci P, Winata CL.

Genome Res.. 2019

2018

Transcriptome Analyses of Mosaic (MSC) Mitochondrial Mutants of Cucumber in a Highly Inbred Nuclear Background.

Mróz TL, Eves-van den Akker S, Bernat A, Skarzyńska A, Pryszcz L, Olberg M, Havey MJ, Bartoszewski G.

G3 . 2018

Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal to zygotic transition.

Winata CL, Łapiński M, Pryszcz L, Vaz C, Bin Ismail MH, Nama S, Hajan HS, Lee SGP, Korzh V, Sampath P, Tanavde V, Mathavan S.

Development.. 2018

Decoding the Heart through Next Generation Sequencing Approaches.

Pawlak M, Niescierowicz K, Winata CL.

Genes (Basel). . 2018

The translational regulation of maternal mRNAs in time and space.

Winata CL, Korzh V.

FEBS Lett. . 2018

Zebrafish Zic Genes Mediate Developmental Signaling.

 

Winata CL, Korzh V.

Adv Exp Med Biol. . 2018

nextPARS: parallel probing of RNA structures in Illumina.

Saus E, Willis JR, Pryszcz LP, Hafez A, Llorens C, Himmelbauer H, Gabaldón T.

RNA. 2018

Draft Genome Sequences of the Highly Halotolerant Strain Zygosaccharomyces rouxii ATCC 42981 and the Novel Allodiploid Strain Zygosaccharomyces sapae ATB301T Obtained Using the MinION Platform.

Bizzarri M, Cassanelli S, Pryszcz LP, Gawor J, Gromadka R, Solieri L.

Microbiol Resour Announc.. 2018

2017

The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling

Piven OO, Winata CL

Experimental Biology and Medicine. 2017

Personalized genome sequencing coupled with iPSC technology identifies GTDC1 as a gene involved in neurodevelopmental disorders

Aksoy I, Utami KH, Winata CL, Hillmer AM, Rouam SL, Briault S, Davila S, Stanton LW, Cacheux V

Hum Mol Genet. 2017

PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD.

Gross B, Pawlak M, Lefebvre P, Staels B.

Nat Rev Endocrinol TEST. 2017

2016

DANIO-CODE: Toward an Encyclopedia of DNA Elements in Zebrafish

Tan H, Onichtchouk D, Winata C

Zebrafish. 2016

2015

Changing Faces of Transcriptional Regulation Reflected by Zic3

Winata CL, Kondrychyn I, Korzh V

Current Genomics. 2015