The "Spotlight Talks" meetings are science-based regardless of the field or discipline. The idea is to present projects in an easy way for other people. It's important to increase personal overview of science done in other fields & disciplines and also to learn about cutting-edge tools. There is also a need to connect people holding a plethora of distinct expertise for potentially solving complex scientific challenges in the future.
The talks are usually 15-minutes-long (can be also a bit shorter or longer), followed by discussions, which can be from 10 minutes to more than one hour, depending on the number, length of questions and answers. The speakers are mostly postdocs and senior researchers working in life sciences.
The Spotlight Talks is an initiative jointly organized by the IIMCB postdoc representatives Anna Hojka-Osińska & Andrii Kopach and the IIMCB alumni Anna Bajur (currently affiliated with the King’s College London). This initiative is open – everyone interested to make a contribution for its development is welcome to join us!
All the colleagues developing technologies for life sciences are also warmly welcome! In case if a research group leader or a professor is interested to give a "Spotlight Talk", this will be a greatest honour for us, and we will do our best to advertise the speaker and to organize the meeting perfectly.
01.06.2021 Ogłoszenie o aukcji na sprzedaż zbędnego składnika majątku - cytometru przepływowego BD FACSCalibur
28.04.2021 Ogłoszenie o nieodpłatnym przekazaniu sprzętu
15.03.2021 Ogłoszenie o nieodpłatnym przekazaniu zużytego składnika majątku ruchomego
15.03.2021 INFORMACJA ws. nieodpłatnego przekazania sprzętu ruchomego
-
December 8, 2020 - Recruitment announcement published
-
December 22, 2020 - Start of the recruitment
-
January 5, 2021 - Deadline for documents submission
Research projects for admissions 2020/2021-3:
1. Title: Rac1 contribution to brain connectivity impairments and neuropsychiatric disorders in Tuberous Sclerosis Complex (NCN/OPUS)
Supervisor: Prof. Jacek Jaworski
Auxiliary Supervisor: Justyna Zmorzyńska, PhD
Institute: International Institute of Molecular and Cell Biology in Warsaw
Laboratory: Laboratory of Molecular and Cellular Neurobiologylular Neurobiology
During the brain development specific cellular events, including establishment of neural polarity, axon elongation, and synapse formation, happen in a temporally and spatially controlled manner to establish connectivity. These temporal and spatial boundaries are created by tight regulation of intrinsic and extrinsic factors. One of major components that may perform this regulation during connectivity development is Rac1 as it links plasma membrane receptors with actin dynamics. Also, mammalian target of rapamycin (mTOR) integrates intra- and extracellular factors. The diseases associated with over-expression of mTOR usually exhibit impairments of the brain development and neuropsychiatric phenotypes that do not necessarily correlate with mutation burden or cannot necessarily be explained by levels of mTOR activation. One of the examples is Tuberous Sclerosis Complex (TSC) in which neuropsychiatric disorders like autism spectrum disorder, intellectual disability, or anxiety do not fully correlate with mTOR expression levels, epilepsy, or tumor burden. Therefore, other molecular pathways must interact with mTOR pathway in order to produce these phenotypes. Our results and preliminary data suggest that Rac1 pathway and its diverse inputs may participate in the regulation of neuropsychiatric disorders in TSC through control of connectivity formation during development. The project will be conducted using zebrafish TSC model.
Aim:
The main objective of this project is to unravel how the interplay between various pathways that converge on Rac1 may participate in the brain connectivity and underlie TSC-associated neuropsychiatric disorders. The project will include behavioral testing, extensive microscopy imaging and image analysis, and transcriptome analysis.
Requirements:
-
Master’s degree in Biology, Biochemistry, Bioinformatics, or related area
-
Solid understanding of the principles of molecular and cellular biology; knowledge on brain development, neuroscience, or computer vision will be a plus
-
Willingness to work with zebrafish animal model
-
Previous laboratory experience in basic molecular biology, biochemistry techniques, and/or imaging experience
-
Prior experience in NGS, and/or working with animal models (mouse or zebrafish), as well as basic programming skills would be an advantage although not essential
-
Ability to communicate fluently in English and a collaborative attitude
Number of positions available: 1
Contact: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
2. Title: Identification of novel vulnerabilities of VPS4B-deficient cancer cells (NCN/OPUS)
Supervisor: Prof. Marta Miączyńska
Auxilliary Supervisor: Ewelina Szymańska, PhD
Institute: International Institute of Molecular and Cell Biology in Warsaw
Laboratory: Laboratory of Cell Biology
Project description:
One of the key challenges in oncology is to effectively kill cancer cells while leaving healthy cells intact. To meet this goal, precision oncology aims to tailor anti-tumor therapies to individual genetic changes in cancer cells of a given patient. To provide new targets for precision oncology we need to understand the relationship between the genetic alterations of cancer cells and the dependencies (vulnerabilities) they cause.
VPS4A and VPS4B enzymes together with the Endosomal Sorting Complex Required for Transport (ESCRT) machinery are involved in membrane remodeling during e.g. endocytosis, cell division, and plasma membrane repair. In our previous project, we identified VPS4B deficiency as a selective weakness of colorectal cancer cells with chromosome 18q deletion. We also demonstrated that survival of VPS4B-depleted cancer cells depends on the presence of VPS4A and characterized the molecular consequences of simultaneous depletion of VPS4 proteins that lead to cell death (more details in Szymańska et al, EMBO Mol Med, 2020). Very probably, VPS4B deficiency makes cancer cells more vulnerable not only to VPS4A loss but also to other perturbations affecting gene(s) cooperating with VPS4B in cellular processes essential for life.
Aim:
We aim to identify and characterize novel vulnerabilities of VPS4B-deficient cancer cells among candidates selected from datasets of the Cancer Dependency Map Project (Broad Institute). To this end, we will examine the impact of simultaneous depletion of VPS4B and a selected candidate on in vitro and in vivo growth of cancer cells. Further, we will elucidate the consequences of depletion of VPS4B and a candidate for cancer-relevant cellular processes, e.g. endocytosis, cytokinesis and migration.
Requirements:
-
Master's degree in biology, biochemistry or related field.
-
Solid understanding of the principles of cell and molecular biology.
-
Previous experience in laboratory work and familiarity with basic molecular biology techniques.
-
Written and spoken fluency in English.
-
Good interpersonal skills and a collaborative attitude.
Number of positions available: 1
Contact: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
3. RNA-Protein Interactions in Human Health and Disease (NCN/DIOSUCRI)
Supervisor: Gracjan Michlewski, PhD, DSc
Institute: International Institute of Molecular and Cell Biology in Warsaw
Laboratory: Laboratory of RNA-Protein Interactions
Project description:
RNA-binding proteins (RBPs) are key molecules that control gene expression through RNA-protein interactions. Consequently, they contribute to cellular homeostasis, normal development and majority of human diseases. Importantly, new RBPs are being discovered by high-throughput proteomics, but we still have a limited understanding of their function.
RNA viruses have caused several epidemics in the 21st century. Taking influenza A virus (IAV) infection as an exemplar, it kills 250,000 to 500,000 people annually and generates a significant global socioeconomic burden. Importantly the emergence of COVID-19 pandemic caused by an RNA virus SARS-CoV-2 continue to have catastrophic consequences on public health and world economy. Thus, a detailed molecular understanding of host-virus interactions is imperative in order to know how best to inactivate these viruses and prevent major disruptions in the future.
We have recently discovered and started characterising novel RNA binding protein – E3 ubiquitin ligase TRIM25 (Choudhury et al. 2014; Choudhury et al. 2017). TRIM25 belongs to a large family of tripartite motif-containing proteins (more than 80), most of which have E3 ubiquitin ligase activity. Many of TIRIMs are positive or negative regulators of innate immune response pathways. Importantly, TRIM25 is emerging as a key factor in the innate immune response to RNA viruses (including IAV, CoV, dengue virus and many others). Despite the essential involvement of TRIM25 in viral RNA-induced innate immunity, its RNA-binding functions are still poorly understood.
Aim:
With this project, we aim to take advantage of an assembled multi-disciplinary team to uncover the roles of the novel RNA-protein interactions in the antiviral response to selected RNA virus infections. We hypothesise that TRIM25 binds directly to viral RNAs to restrict virus propagation. We also hypothesise that other members from TRIM family bind RNA. Finally, we hypothesise that specific host RBPs bind to virus derived RNAs and inhibit or augment innate immune response. In summary, this project has the potential to make crucial contributions to understanding the innate immune response to RNA viruses and provide a platform for the development of novel, RNA-based antiviral therapeutics.
Requirements:
-
MSc degree in biology, biochemistry or related field
-
Solid knowledge of the principles of cell and molecular biology, virology or biochemistry
-
Hands-on experience in laboratory work and is familiar with basic cell and molecular biology techniques
-
Prior experience in virus handling and analysis, cell culture, mass spectrometry or bioinformatics will be an advantage
-
Proficiency in written and spoken English
-
Excellent interpersonal skills, initiative and ability to work independently and in a high-performance team
Number of positions available: 2
Contact: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
4. Title: Cellular adaptation to cold (NCN/GRIEG)
Supervisor: Wojciech Pokrzywa, PhD, DSc
Institute: International Institute of Molecular and Cell Biology
Laboratory: Laboratory of Protein Metabolism
Project description:
Environmental stressors can seriously jeopardize animals’ ability to survive and reproduce. One, potentially dangerous, environmental stressor is acute cold. To counteract cold, affected organisms mount various types of responses, ranging from cold avoidance to adaptation.
The latter strategy is used by hibernating animals, which, in extreme cases, can survive subzero temperatures for many days. Here, we propose to utilize a simple animal model, the nematode Caenorhabditis elegans, as a rapid tool to understand cellular adaptations to cold. We will focus on mechanisms altering the abundance and types of cellular messenger RNAs and proteins, as these kinds of molecules are critical for the live-or-die decision of the cell. In some disease states, like stroke, cooling can facilitate patient’s recovery. Moreover, hibernation is of interest to ageing research, as animals tend to live longer at lower temperatures. Thus, understanding how cells adapt to cold has the potential to influence treatments of human disorders.
Aim:
As a Ph.D. student, you will use the powerful genetic model of Caenorhabditis elegans, which can display a hibernation-like behavior, to determine the mechanism and role of the UCS domain-containing proteins and co-working chaperones in the regulation of cross-talk between translation and proteostasis in the cold. To develop the preliminary results, you will use, e.g., polysome profiling, tissue-specific ribosome imaging, RNA sequencing, in vitro assays on purified proteins, and more.
Requirements:
-
Holds a master’s degree in biology, biochemistry or related field
-
Solid knowledge of the principles of cell and molecular biology, genetics, and/or biochemistry
-
Hands-on experience in laboratory work and familiarity with basic molecular biology techniques
-
Keen interest in translation and proteostasis regulation
-
Prior experience or knowledge of C. elegans or similar model organisms will be an advantage
-
Proficiency in written and spoken English
-
Willingness to learn and take new challenges, ability to work independently, analytical thinking
Number of positions available: 1
Contact: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
5. Title: Elucidating the epigenetic contribution to cardiovascular lineage specification (NCN/OPUS)
Supervisor: Cecilia Winata, PhD
Institute: International Institute of Molecular and Cell Biology in Warsaw
Laboratory: Laboratory of Zebrafish Developmental Genomics / Zebrafish Developmental Genomics Laboratory
Project description:
One key question in the field of organogenesis relates to how the many types of cells required to make an organ are generated from a pool of progenitor cells with initially similar characteristics. Heart (cardiac) progenitor cells are located close to those that will also generate blood and blood vessels (hemoangiogenic). At very early stages of embryonic development, they express nkx2.5 in common. Subsequently, each type of cells expresses different sets of genes and adopts epigenetic states which signifies their identity. Despite the knowledge that nkx2.5-expressing progenitors could contribute to diverse cell lineage types, several key questions remain unanswered. First, it is unclear at which developmental stage the segregation between cardiac and hemoangiogenic fates begin to occur. Second, the exact pathway and intermediate stages which these progenitors go through during the process of lineage specification are still largely unknown. In addition, despite the knowledge that cardiac transcription factors including Nkx2.5 itself are known to interact with chromatin modifying factors and promote chromatin changes, it is still unknown to what extent epigenetics play a role in driving cell fate decisions at the individual cell level. By tracing the evolution of cellular heterogeneity over time, and at the same time assessing the dynamics of epigenetic landscape at the single cell level, we will elucidate the mechanism of cardiovascular lineage specification.
Aim:
The goal of this project is to elucidate the epigenetic contribution towards the lineage decision of nkx2.5-expressing progenitors into either cardiac or hemoangiogenic lineage. We hypothesize that distinct epigenetic states occur among subpopulations of nkx2.5-expressing progenitors according to their lineage diversification potential. We will profile open chromatin regions at single cell level and determine whether Nkx2.5 plays a role in establishing the epigenetic state by scATAC-seq method (Jia et al., 2018, Nat Commun 9, 4877).
Requirements:
-
Master’s degree in Biology, Biochemistry, or related area
-
Solid understanding of the principles of molecular biology and genetics
-
Previous laboratory experience in molecular biology and/or biochemistry techniques
-
Prior experience in flow cytometry, NGS, and/or working with animal models (mouse or zebrafish), as well as basic programming skills would be an advantage although not essential
-
Ability to communicate fluently in English and has a collaborative attitude
Number of positions available: 1
Contact: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
For more information please follow:
Resolving conflicts and role of Ombudsmen at IIMCB
|
PHD PROGRAMMES |
||
|
1 |
2 |
3 |
Projekt pn.: EXSCALATE4CoV (E4C) ma na celu wykorzystanie najpotężniejszych zasobów obliczeniowych, znajdujących się aktualnie w Europie w celu wzmocnienia projektowania leków in-silico. Trzon projektu stanowi Exscalate (EXaSCalesmArtpLatform Against paThogEns), obecnie najmocniejsza inteligentna platforma superkomputerowa na świecie, opracowana przez Dompé. Exscalate (exscalate.eu) wykorzystuje „bibliotekę chemiczną” złożoną z 500 miliardów cząsteczek, a jej zdolność przetwarzania wynosi ponad 3 miliony cząsteczek na sekundę.
Rolą IIMCB jest przyspieszenie eksperymentalnej części projektu i określenie struktury białek koronawirusa w celu oceny podobieństw strukturalnych do innych białek wirusowwych. Badania strukturalne stanowią kluczowy etap w procesie opracowywania leków.
Projekt EXSCALATE4CoV jest realizowany dzięki działalniom Komisji Europejskiej, która pozyskała dodatkowe fundusze na badania nad opracowaniem, leczeniem i diagnostyką szczepionek COVID-19. Projekt rozpoczął się 1 kwietnia br. i potrwa do 30.09.2021 r
Podstawowe informacje:
-
Tytuł projektu: EXaSCalesmArtpLatform Against paThogEns for Corona Virus
-
Akronim projektu: EXSCALATE4CoV
-
Koordynator projektu: Andrea Beccari, Dompe
-
Kierownik projektu IIMCB: Marcin Nowotny, Laboratorium Struktury Białka
-
Kwota dofinansowania: ~ 3 mln €
-
Czas trwania projektu: 18 miesięcy
-
Konsorcjum: 18 partnerów
Konsorcjum E4C:
-
Dompé Farmaceutici SPA
-
Politecnico di Milano (Dept. of Electronics, Information and Bioengineering),
-
Consorzio Interuniversitario CINECA (Supercomputing Innovation and Applications),
-
Università degli Studi di Milano (Pharmaceutical science Department),
-
Katholieke Universiteit Leuven,
-
International Institute Of Molecular And Cell Biology In Warsaw (IIMCB),
-
Electra Italian Crystallographic Association,
-
Fraunhofer Institute for Molecular Biology and Applied Ecology,
-
Barcelona Supercomputing Centre,
-
Forschungszentrum Jülich,
-
Università degli Studi di Napoli Federico II,
-
Università degli Studi di Cagliari,
-
SIB Swiss Institute of Bioinformatics,
-
KTH Royal Institute of Technology (Department of Applied Physics),
-
Istituto Nazionale di Fisica Nucleare (INFN),
-
Associazione BigData,
-
Istitutonazionale per le malattie infettive Lazzaro Spallanzani,
-
Chelonia Applied Science.
NAJNOWSZE INFORMACJE:
-
23.11.2020: Exscalate4Cov 1 performed in Italy the most complex supercomputing experiment to identify new therapies against Sars Cov2 virus (Zobacz także: https://1trilliondock.exscalate4cov.eu)
-
18.06.2020: Badania prowadzone w ramach projektu Exscalate4CoV1, dowiodły, że lek Raloksyfen zaproponowany i wykorzystany w badaniach klinicznych, podczas badań testowych wykazał hamowanie wirusa SARS-CoV-2 in vitro / w komórkach
| This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003551. |
Poznaj prace naukowe wyłonione w konkursie Best Papers Awards – wewnętrznym konkursie Instytutu, wyróżniającym najlepsze publikacje na podstawie ich wartości merytorycznej i znaczenia.
2024
1. TENT5-mediated polyadenylation of mRNAs encoding secreted proteins is essential for gametogenesis in mice.
Autorzy: Brouze M, Czarnocka-Cieciura A, Gewartowska O, Kusio-Kobiałka M, Jachacy K, Szpila M, Tarkowski B, Gruchota J, Krawczyk P, Mroczek S, Borsuk E, Dziembowski A
Czasopismo: Nature Communications
Link: https://www.nature.com/articles/s41467-024-49479-4
2. Pheromone-based animal communication influences the production of somatic extracellular vesicles in C. elegans.
Autorzy: Szczepańska A,* Olek K,* Kołodziejska K, Yu J, Ibrahim AT, Adamkiewicz L, Schroeder FC, Pokrzywa W, Turek M (* contributed equally)
Czasopismo: Nature Communications
Link: https://www.nature.com/articles/s41467-024-47016-x
3. Structure-functional characterization of Lactococcus AbiA phage defense system.
Autorzy: Gapińska M,* Zajko W,* Skowronek K, Figiel M, Krawczyk PS, Egorov AA, Dziembowski A, Johansson MJO, Nowotny M (* contributed equally)
Czasopismo: Nucleic Acids Research
Link: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae230/7642066?login=true
3. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation.
Autorzy: Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL
Czasopismo: iScience
Link: https://www.sciencedirect.com/science/article/pii/S2589004224013087?via%3Dihub
2023
1. Mechanism of RecF–RecO–RecR cooperation in bacterial homologous recombination.
Autorzy: Nirwal S, Czarnocki-Cieciura M, Chaudhary A, Zajko W, Skowronek K, Chamera S, Figiel M, Nowotny M.
Czasopismo: Nature Structural & Molecular Biology
Link: https://www.nature.com/articles/s41594-023-00967-z
2. Impaired iron recycling from erythrocytes is an early hallmark of aging.
Autorzy: Slusarczyk P, Mandal PK, Zurawska G, Niklewicz M, Chouhan K, Mahadeva R, Jończy A, Macias M, Szybinska A, Cybulska-Lubak M, Krawczyk O, Herman S, Mikula M, Serwa R, Lenartowicz M, Pokrzywa W, Mleczko-Sanecka K.
Czasopismo: eLife
Link: https://elifesciences.org/articles/79196
3. Lysine deserts and cullin-RING ligase receptors: Navigating untrodden paths in proteostasis.
Autorzy: Szulc NA, Piechota M, Biriczova L, Thapa P, Pokrzywa W.
Czasopismo: iScience
Link: https://www.sciencedirect.com/science/article/pii/S2589004223024215
2022
1. Structural basis of transposon end recognition explains central features of Tn7 transposition systems.
Autorzy: Kaczmarska Z, Czarnocki-Cieciura M, Górecka-Minakowska KM, Wingo RJ, Jackiewicz J, Zajko W, Poznański JT, Rawski M, Grant T, Peters JE, Nowotny M.
Czasopismo: Molecular Cell
Link: https://www.sciencedirect.com/science/article/pii/S1097276522004397?via%3Dihub
2. A heterotypic assembly mechanism regulates CHIP E3 ligase activity.
Autorzy: Das A, Thapa P, Santiago U, Shanmugam N, Banasiak K, Dąbrowska K, Nolte H, Szulc NA, Gathungu RM, Cysewski D, Krüger M, Dadlez M, Nowotny M, Camacho CJ, Hoppe T, Pokrzywa W.
Czasopismo: The EMBO Journal
Link: https://www.embopress.org/doi/full/10.15252/embj.2021109566
3. Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish.
Autorzy: Niescierowicz K, Pryszcz L, Navarrete C, Tralle E, Sulej A, Abu Nahia K, Kasprzyk ME, Misztal K, Pateria A, Pakuła A, Bochtler M, Winata C.
Czasopismo: Nature Communications
Link: https://www.nature.com/articles/s41467-022-33260-6
2021
1. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion.
Autorzy: Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M.
Czasopismo: Proceedings of the National Academy of Sciences of the United States of America (PNAS)
Link: https://www.pnas.org/content/118/28/e2024596118.long
2. Global view on the metabolism of RNA poly(A) tails in yeast Saccharomyces cerevisiae.
Autorzy: Tudek A, Krawczyk PS, Mroczek S, Tomecki R, Turtola M, Matylla-Kulińska K, Jensen TH, Dziembowski A.
Czasopismo: Nature Communications
Link: https://www.nature.com/articles/s41467-021-25251-w
3. Cytoplasmic polyadenylation by TENT5A is required for proper bone formation.
Autorzy: Gewartowska O, Aranaz-Novaliches G, Krawczyk PS, Mroczek S, Kusio-Kobiałka M, Tarkowski B, Spoutil F, Benada O, Kofroňová O, Szwedziak P, Cysewski D, Gruchota J, Szpila M, Chlebowski A, Sedlacek R, Prochazka J, Dziembowski A.
Czasopismo: Cell Reports
Link: https://www.cell.com/cell-reports/fulltext/S2211-1247(21)00329-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124721003296%3Fshowall%3Dtrue
2020
1. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements.
Autorzy: Manfredonia I, Nithin C, Ponce-Salvatierra A, Ghosh P, Wirecki TK, Marinus T, Ogando NS, Snijder EJ, van Hemert MJ, Bujnicki JM. Incarnato D.
Czasopismo: Nucleic Acids Research
Link: https://academic.oup.com/nar/article/48/22/12436/5961787
2. Origins of the increased affinity of phosphorothioate-modified therapeutic nucleic acids for proteins.
Autorzy: Hyjek-Składanowska M, Vickers T, Napiórkowska A, Anderson B, Tanowitz M, Crooke ST, Liang XH, Seth PP, Nowotny M.
Czasopismo: Journal of the American Chemical Society
Link: https://pubs.acs.org/doi/pdf/10.1021/jacs.9b13524#
3. Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells.
Autorzy: Cendrowski J, Kaczmarek M, Mazur M, Kuzmicz-Kowalska K, Jastrzebski K, Brewinska-Olchowik M, Kominek A, Piwocka K, Miaczynska M.
Czasopismo: eLife
Link: https://elifesciences.org/articles/58504
2019
1. Synthetic lethality between VPS4A and VPS4B triggers an inflammatory response in colorectal cancer.
Autorzy: Szymańska E, Nowak P, Kolmus K, Cybulska M, Goryca K, Derezińska-Wołek E, Szumera-Ciećkiewicz A, Brewińska-Olchowik M, Grochowska A, Piwocka K, Prochorec-Sobieszek M, Mikula M, Miączyńska M.
Czasopismo: EMBO Molecular Medicine
Link: https://www.embopress.org/doi/full/10.15252/emmm.201910812
2. TrkB hyperactivity contributes to brain dysconnectivity, epileptogenesis, and anxiety in zebrafish model of Tuberous Sclerosis Complex.
Autorzy: Kedra M, Banasiak K, Kisielewska K, Wolinska-Niziol L, Jaworski J, Zmorzynska J.
Czasopismo: Proceedings of the National Academy of Sciences of the United States of America (PNAS)
Link: https://www.pnas.org/doi/10.1073/pnas.1910834117
3. RuvC uses dynamic probing of the Holliday junction substrate to achieve sequence specificity and efficient resolution.
Autorzy: Górecka KM, Krepl M, Szlachcic A, Poznański J, Šponer J, Nowotny M.
Czasopismo: Nature Communications
Link: https://www.nature.com/articles/s41467-019-11900-8

Rada Starszych Badaczy (Senior Researchers Council) zrzesza badaczy i starszych badaczy ze wszystkich laboratoriów w MIBMiK. Jej głównym celem jest ułatwianie prac badawczych, osiąganie krótko- i długoterminowych celów naukowych oraz rozwój kariery członków grupy. Rada Starszych Badaczy również angażuje się i wspiera komunikację między naukowcami z władzami instytutu.
Przedstawiciele:
dr Małgorzata Figiel: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
dr Bartosz Tarkowski: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.